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Abstract
This paper proposes a general network performance model (NPM) for monitoring the performance of urban rail systems
using smart card data. NPM is a schedule-based network loading model with strict capacity constraints and boarding priori-
ties. It distributes passengers over the network given origin-destination demand, operations, route choice, and effective train
capacity. A Bayesian simulation-based optimization method for calibrating the effective train capacity is introduced, which
explicitly recognizes that capacity may be different at different stations depending on congestion levels. Case studies with data
from the Mass Transit Railway network in Hong Kong are used to validate the model and illustrate its applicability. NPM is
validated using survey data on left-behind passengers and exiting passenger flow extracted from smart card data. The use of
NPM for performance monitoring is demonstrated by analyzing the spatial-temporal crowding patterns in the system and
evaluating dispatching strategies.

Increases in ridership are outpacing capacity in many
large urban rail transit systems, including Hong Kong,
London, New York, and Beijing (1). Crowding at sta-
tions and on trains is a concern because of its impact on
safety, service quality, and operating efficiency.
Monitoring network performance (e.g., waiting time on
platforms, load on trains, etc.) is essential to help agen-
cies and operators understand the system, inform passen-
gers, and improve operating strategies.

Compared with traditional survey methods for service
performance evaluation, data from automated fare col-
lection (AFC) and automated vehicle location (AVL)
systems provide ample opportunities for analysis in areas
such as travel behavior, operations planning, and moni-
toring, and so forth (2, 3). For performance monitoring,
some performance indicators can be directly derived
from automated data, including vehicle-kilometers,
vehicle-hours, travel time reliability, OD (origin–destina-
tion) demand, and so forth (4, 5). However, the problem
of determining vehicle load and passenger waiting times
is not trivial. Recently, a number of methods have been
proposed to monitor passenger waiting times, passengers
left behind at stations, and vehicle loads using AFC and
AVL data (6). Network loading or assignment models
can also be used. The main difference between network
loading and assignment models lies in their behavioral

assumptions. Network loading models assume that travel
choices are known, while assignment models estimate the
travel choices through user equilibrium criteria (network
loading is a key component of transit assignment
models).

Network assignment models are mainly used for plan-
ning applications. Nuzzolo et al. (7) proposed a dynamic
schedule-based assignment model to simulate the within-
day and day-to-day learning process of passengers’ route
choices. Nuzzolo et al. (8) proposed a mesoscopic transit
modeling framework named DYBUS2 to provide real-
time short-term predictions of network performance.
Subsequently, Yao et al. (9) developed an agent-based
simulation model for the Beijing metro system. The
applicability of these models for performance monitoring
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is limited, however. For performance monitoring, the
interest is in the performance of the system on a particu-
lar day, which represents just one realization of operating
conditions. Therefore, finding an equilibrium solution is
not actually applicable. Network loading models are
more appropriate for this purpose.

Network loading models provide detailed perfor-
mance at different levels (station, line, train, passenger)
given OD flows, path choices, and operating conditions.
Therefore, they are suitable for modeling the perfor-
mance of the network on a particular day. For example,
Grube et al. (10) developed an event-based network
loading model to simulate metro systems in Santiago de
Chile. However, since such approaches have to be
applied at the network level, they require assumptions
about train capacity (as assignment models also do). The
problem of determining actual train capacity is not tri-
vial. It has been found that train capacity may vary
depending on the crowding levels in trains and on plat-
forms (11, 12). Ma et al. (6) showed that ignoring this
variability of train capacity results in biased estimates of
passengers left behind, highlighting the importance of
network loading models to capture this varied capacity
in their representation of the system.

The paper develops a capacity-constrained, schedule-
based network performance model (NPM), introduces a
flexible train capacity model (termed effective capacity),
and proposes an optimization methodology to calibrate
effective train capacities using AFC data. NPM models
detailed passenger trajectories, including access and
egress, queuing, transferring, boarding, alighting, and
being left behind. The contribution of this paper is
threefold:

� Develops a data-driven metro network perfor-
mance model with explicit effective train capacity
constraints and boarding priorities, where the
effective train capacity varies by station depending
on congestion levels

� Proposes a simulation-based optimization method
to calibrate the effective train capacity using AFC
and AVL data

� Validates the NPM and demonstrates its applic-
ability using data from the heavily-congested
metro system in Hong Kong.

The remainder of the paper is organized as follows.
The second section introduces the network performance
model. The route choice and effective train capacity mod-
els, as well as the calibration methodology, are discussed
in the third section. Case studies are presented in the
fourth section to validate the NPM performance and
demonstrate its functionality. The final section concludes
the paper and discusses future research directions.

Network Performance Model

Figure 1 provides an overview of the main structure of
NPM. It consists of four main components: the input,
the network loading engine, the output of various perfor-
mance indicators, and the calibration engine. The cali-
bration engine provides the capability to calibrate model
parameters using available real-life data. Green squares
in the input section represent the parameters to be cali-
brated. Gray squares in the output section indicate model
outputs that are also directly observable from AFC data
(and therefore, can be used for calibration and validation
purposes). The calibration engine compares the output
journey times and OD exit flows with the observed values
(ground truth) and uses the difference to adjust model
parameters (e.g., effective capacity).

Inputs

The NPM inputs include dynamic OD demand, path
choice fractions, train movement information, train
capacity, and access/egress/transfer walking time.
Table 1 summarizes the data inputs. It is assumed that
the system is closed. The AFC data contains passengers’
tap-in and tap-out times and stations (the complete OD
entry demand by time period). The timetable provides
the planned train arrival and departure information,
while the AVL data provides the actual times. The walk
time is assumed to be normally distributed with the mean
and variance calculated from field observations.

Network Loading

Figure 2 summarizes the main structure of the network
loading model. Three objects are defined: trains, queues,
and passengers. Trains are characterized by routes, runs,

Figure 1. Structure of the network performance model.
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current locations, and capacities. Passengers are queued
based on their arrival times. Three different types of pas-
sengers are represented: left-behind passengers who were
denied boarding from previous trains, new tap-in passen-
gers from outside the system, and new transfer passen-
gers from other lines. The left-behind passengers are
usually at the head of the queue.

An event-based modeling framework is used to load
the passengers onto the network. Two types of events are
considered: train arrivals and train departures. The
events are sorted by time and processed sequentially until
all events are successfully completed during the analysis
period. When a train arrives at a station, the offloaded
passengers either transfer or exit. Transfer passengers
join the boarding queue. When a train departs a station,
passengers are loaded on the train up to its available
capacity based on a first-come-first-served (FCFS)
principle.

Preprocessing. Train event lists (arrivals and departures)
are generated according to the actual train movement
data from AVL (or timetable). Each event contains a
train identity (ID), occurrence time, and location

(platform). A passenger is randomly assigned to a route
based on the corresponding path choice probability esti-
mated from a path choice model. Random access and
egress times are generated given corresponding
distributions.

Train Arrivals. For an arrival event, the train offloads pas-
sengers who reach their destination or need to transfer at
the station and updates its state (e.g., train load and in-
vehicle passengers). For passengers who reach their desti-
nations, their tap out times are calculated by adding their
egress time. For those who transfer at the station, their
arrival times at the next platform are calculated based on
the transfer time distribution. The transfer passengers are
added to the waiting queue in order of their arrival times.

Train Departures. For departure events, the queue on the
platform is updated by the new tap-in passengers, that is,
passengers who arrive at the platform after the last train
departed are added into the queue based on their arrival
times. Passengers board the train according to the FCFS
principle until the train reaches its capacity. Passengers
who cannot board are left behind and wait in the queue
for the next train. The states of the train and the waiting
queue are updated accordingly.

Route Choice. Route choice is usually modeled using the
discrete choice framework, which assumes that decision
makers maximize their utilities when making choices
(14). The multinomial logit (MNL) model is a typical
example of discrete choice models. For path choice prob-
lems, the C-logit model is often used. The C-logit is a
variation of the MNL model which corrects for the fact
that alternatives may not be independent because of path
overlap. The C-logit incorporates an additional ‘‘cost’’
attribute, the commonality factor (CF), in the utility
(15). The probability of choosing path i is given by:

Pi =
exp (bX � Xi +bCF � CFi)P

j2W exp (bX � Xj + +bCF � CFj)
, ð1Þ

where Xi is the attribute vector of path i, such as in-
vehicle time, number of transfers, and so forth. W is the
set of all alternative paths for the same OD pair. bX and
bCF are the corresponding coefficients to be estimated.
CFi is the commonality factor of path i, defined as:

CFi = ln
X

j2W (
Li, j

LiLj

)g, ð2Þ

where Li, j is the number of common stations of paths i
and j. Li and Lj are the number of stations for paths i
and j, respectively. g is a positive constant which is deter-
mined based on empirical studies (16). In practice, the

Table 1. Input Variables and Data Sources

Input variable Source

OD entry demand AFC data
Path choice Section 2.2.4
Train movement Timetable or AVL data
Train capacity Section 2.2.5
Access/egress/

transfer walk time
Measured by on-site

observations or estimated
from AFC/AVL data (13)

Note: OD = origin–destination; AFC = automated fare collection; AVL =

automated vehicle location.

Figure 2. Structure of the network loading model.
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estimation of the route choice model parameters is based
on survey data. Recent studies have also proposed esti-
mation methods based on AFC data (17–20).

Effective Capacity. Train capacity is a vague concept.
Normally trains may not reach their designed physical
capacity for various reasons (e.g., passengers may decide
not to board because of the crowding [12]). Therefore,
assuming a fixed physical capacity may not be a reason-
able assumption in real-world situations. This paper
introduces the concept of effective capacity, which is the
train capacity actually being utilized under crowding
situations. Effective capacity is determined by three fac-
tors: (a) distribution of waiting passengers on the plat-
form, (b) train load and distribution across the train, and
(c) passengers’ willingness to board a crowded train.
Thus, train capacity is not constant but may vary across
stations. The term effective capacity is used to differenti-
ate it from the physical fixed train capacity. Effective
capacity, as defined in this paper, is dynamic and changes
depending on the crowding state of the train and the
platform.

Based on previous studies, two factors are included in
the effective capacity (Ce) model: the current train load
when a train arrives at the platform (denoted as L) (11);
and the number of queuing passengers on the platform
(denoted as Q) (21). The base capacity of train i is
Ci = u0ni, where ni is the number of cars of train i. Ci

can be seen as the train load that represents acceptable
service standards. At congested stations, passengers may
still board a train even if it is already crowded (11),
which makes the actual train load exceed Ci. Therefore,
the effective capacity of train i at platform j ( Ce

i, j) can be
formulated as:

Ce
i, j =

u0ni + u1Li, j + u2Qj if platform j is in the list of congested stations
u0ni otherwise

�
8i, j ð3Þ

The congested stations and time periods can be identi-
fied using AFC data (6). The term ‘‘platform’’ means a
combination of station + line + direction. u0, u1, and
u2 are the parameters to be estimated. u0 is a measure-
ment of the service standard (passengers/car). Ce at con-
gested stations and for congested trains is expected to be
higher than that of stations/trains with less crowding,
therefore u1 and u2 should be positive. Although a linear
model is used here, the proposed approach is quite gen-
eral and can accommodate more complex relationships
between Ce, L, and Q.

Model Calibration

The calibration approach is illustrated using the effective
capacity model, assuming two available types of

ground-truth information: observed OD exit flows and
observed journey time distribution (JTD). The calibration
problem is formulated as an optimization problem. The
objective function has two parts: the square error between
model-derived OD exit flows and the observations, and
the difference between model-derived and observed JTD.
The optimization problem is formulated as:

min
u1, u2

w1

X
i, j, t

(qi, jt � ~qi, jt )
2
+w2

X
i, j, t

DKL(fi, jt (x)jj~fi, jt (x)) ð4aÞ

s:t: qi, jt , fi, jt (x)=NetworkLoading(u0, u1, u2) 8i, j, t
ð4bÞ

where qi, jt represents the number of passengers arriving
from station i and exiting at station j during time interval
t (i.e., OD exit flows). ~qi, jt is the observed OD exit flow
extracted from AFC data. w1 and w2 are the weights to
balance the scale and the importance of the two parts.
fi, jt (x) is the probability density function of the estimated
JTD of passengers who come from station i and exit at
station j during time interval t. ~fi, jt (x) is the observed JTD
obtained from AFC data. Equation 4b indicates that qi, jt

and fi, jt (x) are obtained from the network loading model
with u0, u1, and u2 as inputs. The difference of the two
distributions is expressed using Kullback-Leibler diver-
gence ( DKL):

DKL(fi, jt (x)jj~fi, jt (x))=

ð
x

fi, jt (x) � log
fi, jt (x)

~f i, jt
(x)

dx: ð5Þ

Solving the problem in Equation 4 is a black-box opti-
mization problem because of the non-analytical nature of

the network loading process. In this study, a Bayesian
simulation-based optimization (BSO) method (22) is
applied. The BSO works by constructing a posterior dis-
tribution (surrogate function) that best approximates the
objective function. As the number of observations grows,
the posterior distribution improves, and the algorithm
becomes more certain of which regions in the parameter
space are worth exploring. Given the general optimization
approach, more sophisticated effective capacity models
could also be explored using the proposed BSO method.

Applications

NPM can be used to monitor performance in four dimen-
sions: measuring crowding, diagnosing crowding causes,
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evaluating dispatching strategies, and evaluating network
resilience.

Crowding Patterns

Crowding is one of the most important metrics for evalu-
ating the level of service, safety, and so forth. The crowd-
ing indicators, directly obtained from NPM outputs, are
summarized in Table 2. All indicators are time-dependent
with flexible aggregated intervals. The left-behind rate is
the probability of not boarding on the first train, which
can be calculated as the number of passengers who have
been left behind at least once divided by the total number
of boarding passengers at the platform during a specific
time period. The number of ‘‘times left behind’’ is the
number of trains missed after the first train because of
crowding on the trains.

Other service quality indicators can also be output by
NPM, such as the availability of seats, the number of
standing passengers, and journey time reliability.

Crowding Sources

Since the NPM models passengers’ travel behavior at the
individual level, the complete trajectories of all passen-
gers are recorded. To diagnose the formation of crowd-
ing, the NPM can trace the sources of passengers on
each link and passengers exiting at each station. The
information about where passengers come from and how
they contribute to loads at critical links of the system can
inform operators to develop specific demand manage-
ment strategies, such as promotions (2), peak pricing,
and so forth.

Dispatching Strategies

Train dispatching strategies (e.g., headway adjustment,
express trains) are basic instruments transit operators
use on the supply side to deal with crowding or improve
service reliability. Evaluating different train dispatching
strategies can provide useful insights for improving ser-
vice performance. NPM can be used to analyze network
performance under different train dispatching strategies,
such as operating express trains at different times during

the peak. Such trains may skip stops to provide more
capacity at crowded stations.

Network Resilience

Network resilience is the ability of the system to provide
and maintain an acceptable level of service in the face of
disruptions and other challenges to normal operations,
such as incidents, large-scale natural disasters, special
events, and so forth. Metro systems in large cities are fac-
ing more and more service disruptions because of increas-
ing demand and aging infrastructure. These problems
cause serious safety concerns and service performance
deterioration. The responsible agencies are using various
strategies, from demand management to infrastructure
improvements, to prevent disruptions and mitigate their
impacts. Approaches based on passenger information are
still emerging as strategies transit agencies use to deal
with disruptions. NPM can be used to analyze network
resilience by comparing the performance indicators (e.g.,
waiting time) given different actions that operators may
take when disruptions occur, such as providing informa-
tion and dispatching shuttle buses.

Case Study

The NPM was demonstrated and validated using data
from the Mass Transit Railway (MTR) system in Hong
Kong (Figure 3). The system serves the urbanized areas
of Hong Kong Island, Kowloon, and the New
Territories, and consists of 11 lines with 218.2 km (135.6
mi) of rail, 159 stations, including 91 heavy rail stations
and 68 light rail stops. The network serves over 5million
trips on an average weekday. For the urban heavy rail
lines, trip transactions are recorded when entering and
exiting the system. The Admiralty (ADM) station is one
of the most crowded stations, with high volumes of pas-
sengers boarding and transferring there. In this case
study, the airport express and light rail transit services
were not considered since they are separated from the
urban heavy rail lines. Passengers who enter the urban
heavy rail lines from the airport express and light rail ser-
vices need to tap-in again.

System Settings

AFC data from a weekday in March 2017 were used to
generate the OD entry demand and conduct effective
capacity calibration. Since AVL data is not available for
all lines, the timetable was used to provide train move-
ment information (the actual train movements may differ
from the timetable). Considering the high on-time per-
formance of the MTR system (99.9% on-time rate) (23),
this is a reasonable approximation. Since the evening

Table 2. Crowding Indicators

Train Train load

Platform Waiting time
Number of times left behind
Left-behind rate (% of passengers left behind)
Queue length

Link Link flow

Mo et al 5



peak is the most congested period, only the period from
17:00 to 20:00 was considered for the model application.
The warm-up and cool-down times are both set as one
hour. The running time is about 15min on a personal
computer with a 3.6GHz CPU and 32GB of RAM.

Model Calibration

The route choice model used to calculate path choice
fractions for various OD pairs was estimated using data
from a survey of MTR users (16). A total of 31,640 pas-
sengers participated in the survey, with 26,996 valid
responses. The model estimation results are shown in
Table 3. The main explanatory variables are the total in-
vehicle time, relative walk time, and the number of trans-
fers. The relative walk time is defined as the total walk
time (access + transfers + egress) divided by the map
distance of the path. All variables are statistically

significant with expected signs. Routes with high in-vehi-
cle, walk, and transfer times are less likely to be chosen
by passengers. Based on the estimated parameters, the
path shares for all paths for the OD pairs in the MTR
system were calculated.

The optimization problem (Equation 4) is used for
effective capacity calibration. The weights in the objective
function were set to w1 = 1 and w2 = 1000 for the error
in OD exit flows and JTD, respectively. The optimal
coefficients are u�0 = 231:6, u�1 = 0:0732, and u�2 = 0:0607.
The value of u�0 is close to the MTR standard (230
passengers/car). The signs of u�1 and u�2 are consistent
with the discussion in the previous section.

For comparison purposes, a fixed train capacity model
is used as the benchmark to compare with the effective
capacity model. The fixed capacity for train i at platform
j ( C

f
i, j) is defined as:

C
f
i, j = uf ni 8i, j ð5Þ

Three different values of uf were tested for compari-
son, that is, uf = 230, uf = 245, and uf = 260 passengers/
car.

Results

Model Validation. To validate the performance of the
NPM, field observations at ADM station (Tsuen Wan
Line, north direction) on the same day as the AFC
data were used for comparison. The data were collected
by MTR employees who counted passengers on the
platform during the period 18:00–19:00 hours. Left-

Figure 3. Hong Kong Mass Transit Railway (MTR) metro system map.

Table 3. Route Choice Model Estimation Results

Estimate Standard error t-value

In-vehicle time 20.147 0.011 213.64 ***
Relative walk time 21.271 0.278 24.56 ***
Number

of transfers
20.573 0.084 26.18 ***

CF 23.679 1.273 22.89 **
r2 = 0:54

Note: CF = commonality factor.

*** = p\.01; ** = p\.05.
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behind passengers, the number of arriving passengers (sum
of the new tap-in and transfer passengers), and the number
of passengers boarding each train were recorded.

Figure 4 compares the fixed capacity model, effective
capacity model, and ground truth for different indica-
tors. The number of boarding and arriving passengers
from the effective capacity model matches the ground
truth observations well, as shown in Figure 4, a and b.
The peak in Figure 4a is because of an empty train dis-
patched from the upstream terminal station, so that
more capacity was available to serve the passengers at
the crowded ADM station. The root mean square error
(RMSE) of the number of boarding and arriving passen-
gers for each train is reported. The arrival passenger
curves (Figure 4b) for fixed capacity and effective capac-
ity models are nearly the same. This is expected because
the number of arriving passengers mainly depends on the
OD demand and path shares and these two inputs are
the same for the fixed and effective capacity models.
However, the estimates of boarding passengers from the
effective capacity model are closer to the observed values
compared with the fixed capacity model (Figure 4b). The
results support the importance of using the effective
capacity since boarding passengers are directly related to
train capacity.

A comparison of the train load between the fixed
capacity and effective capacity models is shown in Figure
4c (ground truth train load data were not available). The
trains at ADM station are always full from 18:15 to
19:00. Figure 4c shows that the effective capacity can
capture the variability of the train load because of the
change in crowding levels over time. Other studies, based
on actual observations of train loads, also support this
finding (11).

Figure 4d compares the percentage of passengers who
are left behind at different times according to the models
and ground-truth observations. The effective capacity
model provides a more accurate estimation of left-behind
passengers than the fixed capacity model, which is con-
sistent with findings in Ma et al. (6).

Figure 5 compares the exit flows from the NPM
against the actual observations extracted from the AFC
data. The top 30 stations in relation to exit flows are dis-
played. The RMSE of the exit flows for each model is
also reported. The results from the effective capacity
model match the ground truth well and outperform the
fixed capacity models.

Overall, the proposed effective capacity NPM can cap-
ture real-world situations well and has the potential to be
an effective tool for performance monitoring.

Figure 4. Model validation at the Admiralty station, Tsuen Wan Line, northbound (18:00–19:00): (a) boarding passengers; (b) arriving
passengers; (c) train load; and (d) left behind.

Mo et al 7



Crowding Analysis. In a congested rail system, waiting
times increase because of passengers left behind because
of full trains. Figure 6 shows the wait time:headway ratio

and left-behind rates for the 10 most crowded platforms
in the network. The wait time:headway ratio is defined as
the passenger’s average wait time divided by the

Figure 5. Exit flow comparison (18:00–19:00): (a) 18:00-18:30; and (b) 18:30-19:00.

Figure 6. Network crowding patterns (18:00–19:00): (a) average wait time-headway ratio; and (b) left behind rate.

8 Transportation Research Record 00(0)



headway. Under normal conditions for operations with
small headway variabilities and no capacity constraints
(assuming random passenger arrivals), the ratio has a
value close to 0.5. The platform ID in Figure 6 reflects
the station ID + line ID + direction. For example,
2_11_1 is the platform at ADM station serving the Tsuen
Wan Line in the north direction. Figure 6a shows that, at
platforms 27_13_1 and 2_11_1, passengers have to wait
for an average of two headways. That means a passenger
is expected to wait for more than two trains before being
able to board. Figure 6b shows the top 10 platforms by
their left-behind rates (probability of being left behind at
least once). The most congested platform during the eve-
ning peak is at ADM station (Tsuen Wan Line north-
bound). The platform has a left-behind rate of about
0.75, consistent with the high wait time:headway ratio
shown in Figure 6a.

Evaluation of Dispatching Strategy. A key application of
NPM is the evaluation of different dispatching strategies.
As shown in Figure 4a, an empty train is dispatched as
an express from CEN to ADM at 18:40 to serve a large
number of passengers typically waiting at ADM. NPM
can be used to test how effective such strategies are in
relieving congestion. For comparison purposes, two addi-
tional scenarios were also tested: (a) no express train is
dispatched; and (b) the express train is dispatched at
18:30. Figure 7 compares the number of left-behind pas-
sengers at CEN and ADM, which are the first two sta-
tions on the Tsuen Wan Line, northbound. Dispatching
an express train transfers the congestion from ADM to
CEN. The strategy temporally decreases the number of
left-behind passengers at ADM. The dispatching time

does not significantly influence the crowding patterns at
ADM. However, dispatching the express train at 18:30
seems to reduce the number of left-behind passengers
more than at 18:40 as it targets better the peak of the
crowding conditions.

Conclusion

The paper proposed a general network performance
model (NPM) for monitoring network performance. The
major component of NPM is an event-driven network
loading module, which is capable of simulating passen-
gers’ walking, queuing, boarding, and alighting pro-
cesses. NPM can be used to infer crowding patterns and
evaluate dispatching strategies. An important contribu-
tion of the paper is a method for calibrating train capac-
ity, which explicitly recognizes that capacity may be
different at different stations, depending on the crowding
levels on the platform and the train. The model is applied
using a case study with data from Hong Kong’s MTR
network. The results show that NPM is able to replicate
actual conditions (based on AFC data and direct obser-
vations of crowding levels at one station). NPM was also
used to evaluate the effectiveness of various dispatching
strategies in reducing onboard crowding. The results
highlight the importance of calibrating the train capacity
and support the value of the model for performance
monitoring and evaluation of operating strategies.
Future research should focus on jointly calibrating the
parameters of the path choice and train capacity models.
The effective train capacity model can also be improved
to better reflect passengers’ willingness to board. Further
sensitivity tests on the impacts of accuracy of inputs

Figure 7. Comparison of left-behind passengers for different dispatching strategies: (a) CENTRAL (CEN) Station; and (b) ADMIRALTY
(ADM) station.
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could also be interesting, particularly for train
operations.
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